organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(6-Oxo-3,4-diphenyl-1,6-dihydropyridazin-1-yl)acetic acid

Abdullah Aydın,^a* Deniz S. Doğruer,^b Mehmet Akkurt^c and Orhan Büyükgüngör^d

^aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, ^cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: aaydin@gazi.edu.tr

Received 20 October 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.055; wR factor = 0.150; data-to-parameter ratio = 17.5.

In the title compound, $C_{18}H_{14}N_2O_3$, the pyridazine ring makes dihedral angles of 72.73 (11) and 49.97 (10)° with the two phenyl rings. The dihedral angle between the two phenyl rings is 52.42 (12)°. The crystal structure is stabilized by intermolecular O-H···O and C-H···O hydrogen-bonding interactions.

Related literature

For related literature, see: Allen *et al.* (1987); Doğruer *et al.* (2007); Moreau *et al.* (1995); Pople & Beveridge (1970); Prout *et al.* (1994).

Experimental

Crystal data

 $C_{18}H_{14}N_2O_3$ $M_r = 306.31$ Monoclinic, $P2_1/c$ a = 10.3646 (11) Å

b = 10.3410 (9) Å
c = 15.5884 (17) Å
$\beta = 109.721 \ (8)^{\circ}$
V = 1572.8 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

Data collection

Stoe IPDS-2 diffractometer	3658 independent reflections	
Absorption correction: none	2225 reflections with $I > 2\sigma(I)$	
21463 measured reflections	$R_{\text{int}} = 0.101$	
Refinement		

T = 296 K

 $0.40 \times 0.38 \times 0.37 \text{ mm}$

 $R[F^2 > 2\sigma(F^2)] = 0.055$ 209 parameters $wR(F^2) = 0.151$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.19$ e Å $^{-3}$ 3658 reflections $\Delta \rho_{min} = -0.16$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

-x + 1, -y, -z + 1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D{\cdots}A$	$D - H \cdots A$	1
$02-H2A\cdotsO1^{i}$ $C2-H2\cdotsO3^{ii}$ $C13-H13\cdotsO2^{iii}$	0.82 0.93 0.93	1.78 2.59 2.46	2.557 (2) 3.422 (3) 3.220 (3)	157 150 138	
Symmetry codes: (i	-x+2, y	$-\frac{1}{2}, -z + \frac{3}{2};$	(ii) $-x + 2, y + \frac{1}{2}$	$, -z + \frac{3}{2};$ (iii)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare *et al.*, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2323).

References

- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Doğruer, D. S., Ünlü, S., Küpeli, E., Banoğlu & Şahin, M. F. (2007). Turkish J. Pharm. Sci. 4, 57–70.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Moreau, S., Metin, J., Coudert, P. & Couquelet, J. (1995). Acta Cryst. C51, 1834–1836.
- Pople, J. A. & Beveridge, D. L. (1970). Approximate Molecular Orbital Theory New York: McGraw-Hill.
- Prout, K., Bannister, C., Burns, K., Chen, M., Warrington, B. H. & Vinter, J. G. (1994). Acta Cryst. B50, 71–85.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4522 [doi:10.1107/S1600536807053172]

2-(6-Oxo-3,4-diphenyl-1,6-dihydropyridazin-1-yl)acetic acid

A. Aydin, D. S. Dogruer, M. Akkurt and O. Büyükgüngör

Comment

2-[5,6-Diphenyl-3(2*H*)-pyridazinone-2-yl]acetic acid was used as starting material to synthesize 2-[5,6-Diphenyl-3(2*H*)-pyridazinone-2-yl]acetamide derivatives with analgesic and anti-Inflammatory effects. This compound was synthesized for first time by (Doğruer *et al.*, 2007).

All bond lengths and angles in the title compound (I) (Fig. 1) are normal (Allen *et al.*, 1987). The bond lengths for C2=C3, 1.359 (3) Å, C4=N2, 1.306 (3) Å, N1-N2, 1.359 (2) Å and C1=O1, 1.251 (2) Å are comparable with published values for other pyridazinones (Moreau *et al.*, 1995; Prout *et al.*, 1994). In (I), the pyridazine ring (C1-C4/N1/N2) makes dihedral angles of 72.73 (11)° and 49.97 (10)° with two phenyl rings (C5-C10) and (C11-C16), respectively. The dihedral angle between two phenyl rings is 52.42 (12)°.

The quantum-chemical calculation, using the *CNDO* (Pople *et al.*, 1970) aproximation showed that the charges at atoms C1, C4, C18, N1, N2, O1, O2 and O3 are 0.331, 0.109, 0.403, -0.127, -0.094, -0.367, -0.312 and -0.268 e⁻, respectively. The spatial view of the calculated molecule is shown in Fig. 2. The *HOMO* and *LUMO* energy levels are -10.4162 and 0.8511 eV, respectively. The calculated molecule dipole moment of (I) is 3.795 Debye (1 D = $3.33564 \times 10-30$ *Cm*). Due to the lack of the strong intermolecular interactions in the crystal structure of (I), the theoretical *CNDO* and experimental X-rays values of the geometric parameters in (I) are almost comparable within the experimental error interval.

The crystal structure of (I) is stabilized by intermolecular O—H…O and C—H…O hydrogen bonding interactions (Table 1, Fig. 3).

Experimental

0.01 mol of ethyl 2-[5,6-Diphenyl-3(2*H*)-pyridazinone-2-yl]acetate in 100 ml 10% NaOH was hydrolyzed for 4 h. After cooling to 278 K, the reaction mixture was acidified 20% HCl. The precipitate was filtered, washed with water to neutral pH and dried and crystallized from 2-propanol (m.p. 491 K, yield 80%), IR $v_{max}(cm^{-1})$ (KBr): 3100–2100 (OH), 1725 (CO acid), 1627 (CO amide) (Doğruer *et al.*, 2007).

Refinement

H atoms were positioned geometrically with C–H = 0.93–0.97Å and O—H = 0.82 Å, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. *ORTEP-3* drawings of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2. The spatial view of the title molecule calculated by the CNDO approximation.

Fig. 3. View of the hydrogen bonding interactions (dash lines) of the title compound in the unit cell. H atoms not involved in hydrogen bonding interactions have been omitted for clarity.

2-(6-Oxo-3,4-diphenyl-1,6-dihydropyridazin-1-yl)acetic acid

Crystal data	
$C_{18}H_{14}N_2O_3$	$F_{000} = 640$
$M_r = 306.31$	$D_{\rm x} = 1.294 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 37146 reflections
a = 10.3646 (11) Å	$\theta = 2.0 - 28.0^{\circ}$
<i>b</i> = 10.3410 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.5884 (17) Å	T = 296 K
$\beta = 109.721 \ (8)^{\circ}$	Prism, colourless
$V = 1572.8 (3) \text{ Å}^3$	$0.40\times0.38\times0.37~mm$
Z = 4	
Dutu sallastian	

Data collection

Stoe IPDS-2 diffractometer	2225 reflections with $I > 2\sigma(I)$
Monochromator: plane graphite	$R_{\rm int} = 0.101$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 27.8^{\circ}$
T = 296 K	$\theta_{\min} = 2.1^{\circ}$
ω scans	$h = -13 \rightarrow 13$

Absorption correction: none	$k = -13 \rightarrow 13$
21463 measured reflections	$l = -20 \rightarrow 20$
3658 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0634P)^2 + 0.0964P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.151$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
3658 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
209 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), FC [*] =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.013 (2)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.94042 (12)	0.14434 (14)	0.76943 (10)	0.0709 (5)
02	0.92925 (14)	-0.17253 (16)	0.77544 (10)	0.0781 (5)
03	1.08356 (16)	-0.13826 (18)	0.91244 (11)	0.0929 (6)
N1	0.77229 (14)	0.02608 (16)	0.79118 (11)	0.0570 (5)
N2	0.64208 (15)	-0.01944 (16)	0.76872 (11)	0.0599 (5)
C1	0.81545 (17)	0.11781 (19)	0.74420 (13)	0.0575 (6)
C2	0.71116 (18)	0.17567 (19)	0.66976 (13)	0.0590 (6)
C3	0.57856 (17)	0.13681 (18)	0.64688 (12)	0.0533 (6)
C4	0.54875 (17)	0.03339 (19)	0.69902 (13)	0.0544 (6)
C5	0.40883 (18)	-0.0228 (2)	0.67529 (14)	0.0606 (7)
C6	0.3823 (2)	-0.1430 (2)	0.63435 (16)	0.0743 (8)
C7	0.2494 (3)	-0.1894 (3)	0.60170 (19)	0.0942 (10)
C8	0.1447 (3)	-0.1187 (4)	0.6128 (2)	0.1068 (13)

C9	0.1710 (2)	-0.0024 (4)	0.6561 (2)	0.1076 (15)
C10	0.3029 (2)	0.0472 (3)	0.68677 (19)	0.0836 (9)
C11	0.46957 (17)	0.20112 (19)	0.57093 (13)	0.0545 (6)
C12	0.37528 (19)	0.1305 (2)	0.50165 (13)	0.0658 (7)
C13	0.2768 (2)	0.1926 (3)	0.43160 (16)	0.0779 (9)
C14	0.2698 (2)	0.3255 (3)	0.42961 (17)	0.0814 (9)
C15	0.3612 (2)	0.3964 (2)	0.49734 (17)	0.0764 (8)
C16	0.46225 (19)	0.3345 (2)	0.56787 (15)	0.0657 (7)
C17	0.8709 (2)	-0.0297 (2)	0.87331 (14)	0.0654 (7)
C18	0.97349 (19)	-0.1186 (2)	0.85540 (14)	0.0619 (7)
H2	0.73400	0.24090	0.63640	0.0710*
H2A	0.98900	-0.21990	0.76920	0.1170*
Н6	0.45380	-0.19270	0.62870	0.0890*
H7	0.23120	-0.26890	0.57210	0.1130*
H8	0.05540	-0.15010	0.59070	0.1280*
Н9	0.09990	0.04410	0.66520	0.1290*
H10	0.31980	0.12760	0.71500	0.1000*
H12	0.37890	0.04060	0.50280	0.0790*
H13	0.21480	0.14460	0.38540	0.0940*
H14	0.20290	0.36710	0.38230	0.0980*
H15	0.35570	0.48620	0.49620	0.0920*
H16	0.52510	0.38310	0.61310	0.0790*
H17A	0.82130	-0.07720	0.90590	0.0790*
H17B	0.91970	0.04000	0.91250	0.0790*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0406 (7)	0.0780 (9)	0.0799 (10)	-0.0027 (6)	0.0016 (6)	0.0080 (7)
02	0.0593 (8)	0.0896 (11)	0.0671 (9)	0.0188 (7)	-0.0026 (7)	-0.0126 (8)
03	0.0646 (9)	0.1135 (13)	0.0735 (10)	0.0284 (9)	-0.0123 (8)	-0.0078 (9)
N1	0.0416 (7)	0.0679 (10)	0.0542 (9)	0.0041 (6)	0.0065 (7)	0.0057 (7)
N2	0.0473 (8)	0.0704 (10)	0.0580 (9)	0.0011 (7)	0.0124 (7)	0.0059 (8)
C1	0.0432 (9)	0.0610 (11)	0.0609 (11)	0.0004 (8)	0.0078 (8)	-0.0009 (9)
C2	0.0450 (9)	0.0654 (12)	0.0595 (11)	-0.0005 (8)	0.0083 (9)	0.0074 (9)
C3	0.0427 (9)	0.0615 (11)	0.0513 (10)	0.0020 (7)	0.0102 (8)	-0.0003 (8)
C4	0.0430 (9)	0.0651 (12)	0.0515 (10)	0.0026 (7)	0.0111 (8)	0.0013 (8)
C5	0.0475 (10)	0.0738 (13)	0.0567 (11)	-0.0050 (9)	0.0126 (9)	0.0052 (9)
C6	0.0679 (13)	0.0788 (15)	0.0744 (14)	-0.0130 (11)	0.0218 (11)	0.0034 (12)
C7	0.0831 (17)	0.1003 (19)	0.0899 (18)	-0.0398 (15)	0.0171 (15)	0.0045 (15)
C8	0.0551 (14)	0.134 (3)	0.118 (2)	-0.0281 (16)	0.0119 (15)	0.027 (2)
C9	0.0529 (13)	0.129 (3)	0.144 (3)	-0.0006 (15)	0.0375 (16)	0.013 (2)
C10	0.0563 (12)	0.0979 (18)	0.0993 (18)	-0.0012 (11)	0.0300 (13)	-0.0025 (14)
C11	0.0402 (8)	0.0671 (12)	0.0531 (10)	0.0029 (8)	0.0117 (8)	0.0041 (9)
C12	0.0498 (10)	0.0822 (14)	0.0553 (11)	0.0011 (9)	0.0046 (9)	0.0010 (10)
C13	0.0549 (11)	0.1049 (19)	0.0602 (13)	0.0027 (11)	0.0013 (10)	0.0049 (12)
C14	0.0530 (11)	0.113 (2)	0.0688 (14)	0.0168 (12)	0.0081 (11)	0.0239 (14)
C15	0.0608 (12)	0.0790 (15)	0.0858 (16)	0.0142 (10)	0.0199 (12)	0.0218 (12)

C16	0.0504 (10)	0.0720 (13)	0.0681 (13)	0.0019 (9)	0.0113 (10)	0.0069 (10)
C17	0.0551 (11)	0.0790 (14)	0.0524 (11)	0.0101 (9)	0.0053 (9)	0.0082 (10)
C18	0.0489 (10)	0.0696 (13)	0.0565 (11)	0.0043 (9)	0.0037 (9)	0.0053 (9)
Geometric p	arameters (Å, °)					
01—C1		1.251 (2)	C11–	C12	1.3	94 (3)
O2—C18		1.300 (3)	C12-	C13	1.3	76 (3)
O3—C18		1.204 (3)	C13–	C14	1.3	76 (4)
O2—H2A		0.8200	C14–	C15	1.3	69 (4)
N1-C1		1.363 (3)	C15-	C16	1.3	92 (3)
N1-C17		1.461 (3)	C17–	C18	1.5	01 (3)
N1—N2		1.359 (2)	C2—	H2	0.9	300
N2—C4		1.306 (3)	C6—	H6	0.9	300
C1-C2		1.424 (3)	C'/	H7	0.9	300
$C_2 = C_3$		1.359 (3)	C8—	H8	0.9	300
C_{3} C_{11}		1.439 (3)	C9—	H9 H10	0.9	300
C4-C5		1.489 (3)	C10=	-H10 -H12	0.9	300
C_{5} - C_{10}		1 376 (3)	C12	-H13	0.9	300
C5—C6		1.382 (3)	C14-	-H14	0.9	300
C6—C7		1.383 (4)	C15–	-H15	0.9	300
С7—С8		1.367 (5)	C16–	-H16	0.9	300
С8—С9		1.361 (6)	C17-	–H17A	0.9	700
C9—C10		1.386 (4)	C17–	–H17B	0.9	700
C11—C16		1.381 (3)				
O1…C18		3.000 (3)	C12…	·C10	3.3	31 (3)
O1…C8 ⁱ		3.354 (4)	C13	·O2 ^{iv}	3.2	20 (3)
O1…O2 ⁱⁱ		2.557 (2)	C15	$\cdot C15^{x}$	3.5	66 (3)
O2…O1 ⁱⁱⁱ		2.557 (2)	C16.	·N2 ⁱ	3.4	35 (3)
O2…C1		3.202 (3)	C18	·O1	3.0	00 (3)
O2…N1		2.682 (2)	C1…I	H2A ⁱⁱ	2.6	900
O2…C13 ^{iv}		3.220 (3)	C2…I	H16	2.8	200
O3····C7 ^v		3.378 (3)	C4…I	H12	2.9	700
O1…H2A ⁱⁱ		1.7800	C5…I	H12	2.6	800
O1…H9 ^{vi}		2.8700	C6…]	H12	2.7	900
01…H17B		2.5500	C15	·H17A ⁱ	2.8	000
O1…H14 ^{vii}		2.7000	C16	·H15 ^x	3.0	400
O2…H13 ^{iv}		2.4600	C16…	·H2	2.8	200
O3…H2 ⁱⁱⁱ		2.5900	H2…	C16	2.8	200
$O3 \cdots H7^{v}$		2.6200	H2…]	H16	2.5	400
N1…O2		2.682 (2)	H2…(O3 ⁱⁱ	2.5	900
N1…C7 ⁱ		3.428 (3)	H2A·	··O1 ⁱⁱⁱ	1.7	800
N2…C16 ^{viii}		3.435 (3)	H2A·	··C1 ⁱⁱⁱ	2.6	900
C1…O2		3.202 (3)	H7…]	H17B ^{viii}	2.5	800

C1···C7 ⁱ	3.360 (4)	H7···O3 ^{ix}	2.6200
C1···C8 ⁱ	3.456 (4)	H9…O1 ^{xi}	2.8700
C5…C12	3.054 (3)	H12…C4	2.9700
C6…C12	3.490 (3)	H12···C5	2.6800
C7…C1 ^{viii}	3.360 (4)	H12…C6	2.7900
C7…N1 ^{viii}	3.428 (3)	H13····O2 ^{iv}	2.4600
C7···O3 ^{ix}	3.378 (3)	H14····O1 ^{xii}	2.7000
C8····C1 ^{viii}	3.456 (4)	H15…C16 ^x	3.0400
C8…O1 ^{viii}	3.354 (4)	H16…C2	2.8200
C10…C12	3.331 (3)	H16…H2	2.5400
C10…C11	3.299 (3)	H17A…C15 ^{viii}	2.8000
C11…C10	3.299 (3)	H17B…O1	2.5500
C12···C6	3.490 (3)	H17B…H7 ⁱ	2.5800
C12····C5	3 054 (3)		
C_{18} C_{2} H_{2A}	109.00	N1-C17-C18	11/ 13 (17)
N2_N1_C17	115 43 (16)	02-018-017	114.13(17) 113.47(18)
C1 - N1 - C17	119.11 (16)	03 - C18 - C17	121 35 (19)
$N_2 = N_1 = C_1$	125 46 (16)	02 - C18 - O3	121.33(1)
N1 - N2 - C4	117 51 (16)	C1 - C2 - H2	120.00
01-C1-C2	125.81 (18)	$C_3 - C_2 - H_2$	120.00
N1-C1-C2	115.72 (17)	C5—C6—H6	120.00
O1—C1—N1	118.47 (17)	С7—С6—Н6	120.00
C1—C2—C3	120.81 (18)	С6—С7—Н7	120.00
C2—C3—C4	117.55 (17)	С8—С7—Н7	120.00
C4—C3—C11	122.09 (17)	С7—С8—Н8	120.00
C2—C3—C11	120.35 (17)	С9—С8—Н8	120.00
N2—C4—C3	122.76 (17)	С8—С9—Н9	120.00
C3—C4—C5	121.79 (17)	С10—С9—Н9	120.00
N2—C4—C5	115.44 (17)	С5—С10—Н10	120.00
C4—C5—C6	119.42 (18)	С9—С10—Н10	120.00
C4—C5—C10	121.0 (2)	C11—C12—H12	120.00
C6—C5—C10	119.3 (2)	C13—C12—H12	120.00
C5—C6—C7	120.0 (2)	C12—C13—H13	120.00
C6—C7—C8	120.2 (3)	C14—C13—H13	120.00
C7—C8—C9	120.1 (3)	C13—C14—H14	120.00
C8—C9—C10	120.5 (3)	C15—C14—H14	120.00
C5—C10—C9	119.9 (3)	C14—C15—H15	120.00
C3—C11—C12	121.84 (18)	C16—C15—H15	120.00
C3—C11—C16	119.44 (18)	С11—С16—Н16	120.00
C12—C11—C16	118.72 (18)	C15—C16—H16	120.00
C11—C12—C13	120.6 (2)	N1—C17—H17A	109.00
C12—C13—C14	120.2 (2)	N1—C17—H17B	109.00
C13—C14—C15	120.0 (2)	C18—C17—H17A	109.00
C14—C15—C16	120.2 (2)	С18—С17—Н17В	109.00
C11—C16—C15	120.28 (19)	H17A—C17—H17B	108.00
C1—N1—N2—C4	-3.7 (3)	N2-C4-C5-C10	112.0 (2)
C17—N1—N2—C4	175.89 (17)	N2-C4-C5-C6	-73.2 (3)

N2—N1—C1—O1	-175.38 (17)	C3—C4—C5—C6	105.4 (2)
C17—N1—C1—O1	5.1 (3)	C3—C4—C5—C10	-69.4 (3)
N2—N1—C1—C2	4.9 (3)	C4—C5—C6—C7	-172.0 (2)
C17—N1—C1—C2	-174.62 (17)	C6-C5-C10-C9	-1.0 (4)
N2-N1-C17-C18	109.0 (2)	C4—C5—C10—C9	173.8 (2)
C1-N1-C17-C18	-71.4 (2)	C10—C5—C6—C7	2.9 (4)
N1—N2—C4—C3	-0.6 (3)	С5—С6—С7—С8	-2.4 (4)
N1—N2—C4—C5	178.03 (16)	C6—C7—C8—C9	0.0 (5)
N1—C1—C2—C3	-2.0 (3)	C7—C8—C9—C10	2.0 (5)
O1—C1—C2—C3	178.26 (19)	C8—C9—C10—C5	-1.5 (5)
C1—C2—C3—C4	-1.6 (3)	C3-C11-C12-C13	-179.09 (19)
C1—C2—C3—C11	177.87 (17)	C12-C11-C16-C15	0.8 (3)
C11—C3—C4—C5	5.1 (3)	C16-C11-C12-C13	0.0 (3)
C2-C3-C11-C12	130.3 (2)	C3-C11-C16-C15	179.9 (2)
C4—C3—C11—C12	-50.3 (3)	C11-C12-C13-C14	-0.5 (3)
C4—C3—C11—C16	130.7 (2)	C12-C13-C14-C15	0.2 (3)
C2-C3-C11-C16	-48.7 (3)	C13-C14-C15-C16	0.6 (4)
C11—C3—C4—N2	-176.41 (18)	C14-C15-C16-C11	-1.2 (3)
C2—C3—C4—N2	3.0 (3)	N1-C17-C18-O2	-26.4 (3)
C2—C3—C4—C5	-175.47 (18)	N1-C17-C18-O3	155.6 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*+2, *y*+1/2, -*z*+3/2; (iii) -*x*+2, *y*-1/2, -*z*+3/2; (iv) -*x*+1, -*y*, -*z*+1; (v) *x*+1, -*y*-1/2, *z*+1/2; (vi) *x*+1, *y*, *z*; (vii) *x*+1, -*y*+1/2, *z*+1/2; (viii) -*x*+1, *y*-1/2, -*z*+3/2; (ix) *x*-1, -*y*-1/2, *z*-1/2; (x) -*x*+1, -*y*+1, -*z*+1; (xi) *x*-1, *y*, *z*; (xii) *x*-1, -*y*+1/2, *z*-1/2.

Hydrogen-bond geometry $(Å, \circ)$

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O2—H2A···O1 ⁱⁱⁱ	0.82	1.78	2.557 (2)	157
C2—H2···O3 ⁱⁱ	0.93	2.59	3.422 (3)	150
C13—H13···O2 ^{iv}	0.93	2.46	3.220 (3)	138

Symmetry codes: (iii) -x+2, y-1/2, -z+3/2; (ii) -x+2, y+1/2, -z+3/2; (iv) -x+1, -y, -z+1.

